






polled showed a negative trend in u700, with his-
torical radiative forcing having a median trend of
–0.2 m/s over the 1950–2005 simulated period
(20% of the trend in Fig. 3 and table S1), and
comparison of future differences in u700 assessed
from these models between 2071–2100 and 1950–
2005 for experiment RCP8.5 show a small, yet
systematic decline during the winter on the order
of 0.65 m/s (6.5%) for the region addressed in
this study (Fig. 4 and table S1). The regional slow-
ing of the lower-tropospheric westerlies may be
partially a consequence of a general relaxation
of the regional MTG associated with differ-
ential rates of winter warming across the broader
region (fig. S9). The average projected change
in u700 over the 21st century is only slightly
greater than the observed decrease, and both rep-
resent a substantial decline with respect to the
1950–2005 average (fig. S3). Both the past two
decades and projected mean wind speed repre-
sent dry conditions for the PNW, with current
streamflows being comparable to the 1930s, re-
cognized regionally as one of the driest periods
in the past few centuries [(27–29) and supple-
mentary materials].

The slopes of the regressions between SNOTEL
precipitation and u700 were on the order of 10 to
15% of precipitation per unit (1 m/s) of change in
u700 (fig. S6) and broadly show the same geo-
graphic pattern as the correlations (fig. S5). De-
cline in the mean u700 over the period was about
1 m/s, and these slopes are comparable to the ave-
rage decline in mean streamflow of 16% over the
period (10). Some of the difference between ob-
served andmodeled decline may be due to changes
in atmospheric moisture fluxes related to water
vapor content changes that also contribute to oro-
graphic enhancement (30). Long-term changes in
moisture availability and temperature are likely
to modulate the influence of wind changes on
orographic precipitation enhancement, but the
mechanisms are varied and complex and rely on
assumptions about upwind boundary conditions
and cloud microphysics, making projections un-
certain and requiring more complex modeling
efforts (17, 31).

The topography used by global circulation
models (GCMs) substantially flattens even the
largest mountain ranges, minimizing their influ-
ence on air masses and precipitation. Although
GCMs capture the effects of the broadeningHadley
cell and poleward movement of midlatitude storm
tracks, yielding general agreement on decreased
precipitation and streamflow in the southwestern
U.S. (32), the effects of decreased midlatitude
westerly wind speeds on orographic precipitation
have not been accounted for in mountainous re-
gions. Regional climate models (RCMs) that better
resolve mountain ranges could conceptually help
frame expectations regarding orographic precipita-
tion (33). However, parameterizations of fine-scale
processes still require tuning to empirical observa-
tions, and information about high-elevation precip-
itation trends implicit in streamflow data may assist
with calibration.

Better precipitation projections for moun-
tainous areas are critical because of (i) their
importance for the conservation of biodiversity
in a changing climate, and (ii) their importance
as a water supply for downstream agriculture,
industry, energy, and municipal use. Although
mountains may serve as refugia for cold-adapted
species and reservoirs for late-season runoff,
decreases in high-elevation precipitation com-
bined with warming temperatures and shifts in
precipitation phases could have profound conse-
quences for the ecohydrology of mountain eco-
systems. Decreases in precipitation, particularly
in the driest years, increase the risk of forest fires
and may pose a greater risk than temperature
increases (5), although more broadly combined
drying and warming are most detrimental (34).
Cold-water aquatic species faced with warm-

ing stream temperatures will seek higher eleva-
tions and smaller tributary streams (35) but may
find less habitat there as headwater streamflows
decrease.

Previous studies have attributed changes in
streamflow timing, spring onset, and snowpack
to warming temperatures (2, 4, 36). Our findings
suggest that an additional mechanism—decreased
orographic precipitation enhancement associated
with decreases in zonal winds—may also have
contributed to observed trends. The lack of con-
cordance between the traditionally used HCN net-
work and either higher-elevation SNOTEL stations
or streamflow measurements should place an im-
portant caveat on the assumption that circulation
and precipitation have been unaffected in this re-
gion, particularly in the mountains, where most
precipitation falls.

Fig. 2. Correlation of 1982–2012 November to March HCN (circles) and SNOTEL (squares)
precipitation with November to March u700 zonal winds over 42.5° to 47.5°N and 115° to
130°W. Three longitudinal transects (lower panels) show examples of the pattern of correlations with
elevation. The larger symbols indicate statistical significance (P < 10%).
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Improved understanding of the relative roles of
temperature and precipitation on snowpack storage
and runoff timing is critical for climate change
adaptation. One of the recommendations for adap-
tation to earlier snowmelt is to increase the storage
capacity in reservoirs to replace snowpack storage;
however, in circumstancesofdeclining precipitation,
this could be maladaptive. For instance, reductions
in snowpack storage driven by reduced precipita-
tion would also result in earlier streamflow timing
(5,10). In such a case, a damwould represent another
consumptive use of water, and the water rights
necessary to fill the dam may not be available in
the driest and consequently “earliest” years.

The lack of long-term precipitation data from
mountains severely limits our understanding of
historical trends and the empirical framework
needed for understanding impacts of climate
variability and change. The analyses here further
highlight the importance of historical stream-
flow and wind data and suggest that they could
be used to extend high-elevation precipitation
records to earlier periods or enhance existing
gridded historical climatological data sets. Inter-
annual variability in orographic enhancement
is partially captured by the SNOTEL network,
dating to the 1980s. However, reliance on time-
invariant orographic precipitation ratios for earlier

historical analyses may lead to errors in interpret-
ing trends, because the differential changes in low-
elevation and high-elevation precipitation are not
reflected.

Prediction of orographic precipitation effects
in a changing climate has been acknowledged as
a difficult task that depends on a number of as-
sumptions (17, 31, 37). The analysis of disparate
streamflow and precipitation records in this re-
gion, encompassing much of the headwaters of
the Snake and Columbia River basins, highlights
a change of substantial magnitude with consid-
erable ecological and economic consequences
that has heretofore been ignored or dismissed. At
the same time, we note new utility for streamflow
data and a potential approach for the assessment
of orographic precipitation changes related to in-
creased radiative forcing using macroscale wind
information.
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Long-Term Dynamics of Adaptation in
Asexual Populations
Michael J. Wiser,1,2 Noah Ribeck,1,3 Richard E. Lenski1,2,3*

Experimental studies of evolution have increased greatly in number in recent years, stimulated by the
growing power of genomic tools. However, organismal fitness remains the ultimate metric for
interpreting these experiments, and the dynamics of fitness remain poorly understood over long time
scales. Here, we examine fitness trajectories for 12 Escherichia coli populations during 50,000
generations. Mean fitness appears to increase without bound, consistent with a power law. We also
derive this power-law relation theoretically by incorporating clonal interference and diminishing-returns
epistasis into a dynamical model of changes in mean fitness over time.

The dynamics of evolving populations are
often discussed in terms of movement on
an adaptive landscape, where peaks and

valleys are states of high and low fitness, respec-
tively. There is considerable interest in the struc-
ture of these landscapes (1–7). Recent decades
have seen tremendous growth in experiments
using microbes to address fundamental questions
about evolution (8), but most have been short in
duration. The Long-Term Evolution Experiment
(LTEE)withEscherichia coli provides the oppor-
tunity to characterize the dynamics of adaptive
evolution over long periods under constant con-
ditions (1, 9, 10). Twelve populationswere founded
from a common ancestor in 1988 and have been
evolving for >50,000 generations, with samples
frozen every 500 generations. The frozen bacteria
remain viable, and we use this “fossil record” to
assess whether fitness continues to increase and
to characterize mean fitness trajectories (11).

We first performed 108 competitions, in the
same conditions as the LTEE, between samples
from nine populations at 40,000 and 50,000 gen-
erations against marked 40,000-generation clones
(11). Three populations were excluded for tech-
nical reasons (11). Fitness was quantified as the
dimensionless ratio of the competitors’ realized

growth rates. Most populations experienced sig-
nificant improvement (Fig. 1A), and the grand
mean fitness increased by 3.0% (Fig. 1B).

To examine the shape of the fitness trajectory,
we competed samples from all 12 populations and
up to 41 time points against the ancestor (11). We
compared the fit of two alternative models with
the fitness trajectories. The hyperbolic model de-
scribes a decelerating trajectory with an asymptote.
The power law also decelerates (provided the ex-
ponent is <1), but fitness has no upper limit.

Hyperbolic model

w ¼ 1þ at=ðt þ bÞ

Power law

w ¼ ðbt þ 1Þa

Mean fitness is w, time in generations is t,
and each model has two parameters, a and b.
Both models are constrained such that the an-
cestral fitness is 1, hence the offset of +1 in the
power law. The hyperbolic model was fit to the
first 10,000 generations of the LTEE (9), but oth-
ers suggested an alternative nonasymptotic tra-
jectory (12). The grandmean fitness values and the
trajectory for each model are shown in Fig. 2A
and the individual populations in fig. S1. Both
models fit the data very well; the correlation co-
efficients for the grand means and model trajec-
tories are 0.969 and 0.986 for the hyperbolic and
power-law models, respectively. When Bayesian
information criterion scores (11) are used, the power
law outperforms the hyperbolic model with a pos-
terior odds ratio of ~30 million (table S1). The
superior performance of the power law also holds
when populations are excluded because of in-
complete time series or evolved hypermutabil-
ity (table S1). The power law provides a better
fit to the grand-mean fitness than the hyper-
bolic model in early, middle, and late generations
(fig. S2). The power law is supported (odds ratios
>10) in six individual populations, whereas none
supports the hyperbolic model to that degree
(table S2). The power law also predicts fitness
gains more accurately than the hyperbolic model.
When fit to data for the first 20,000 generations
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Fig. 1. Fitness changes in nine E. coli populations between 40,000 and 50,000 generations. (A)
Filled symbols: six populations whose improvement was significant (P < 0.05); open symbols: three
populations without significant improvement. (B) Grand-mean fitness at 40,000 and 50,000 generations
relative to 40,000-generation competitor and the ratio of means showing overall gain. Error bars are 95%
confidence limits based on replicate assays (A) or populations (B).
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