Flexibility in Flood Management Systems
with application to California’s Central Valley, USA

KARA DiFRANCESCO, PhD CANDIDATE
WATER RESOURCES ENGINEERING
OREGON STATE UNIVERSITY
DiFRANCK@ENGR.ORST.EDU

FLOODrisk 2012
Rotterdam, The Netherlands
21 November 2012
“An increase in... the flexibility and adaptive capacity of water management regimes should be a primary management goal.”

(Pahl-Wostl et al 2007)
“Towards a definition of flexibility: in search of the Holy Grail” (Golden and Powell, 2000)

Flexibility is:

the inherent ability of a system... to cope with or adapt to uncertain and changing conditions, ...in a timely and cost-effective manner.

(DiFrancesco and Tullos, in review)
Characteristics of Flexible Water Management Systems

Characteristics

Flood system components (S: Structural, NS: Non-structural)

Slack - degree of excess capacity; underutilization (Turner and Lankford, 2005)
- Storage capacity of reservoirs/bypasses/easements (S)
- Stream conveyance capacity, reservoir release capacity, bypass inflow/outflow (S)
- Available flood management funds (NS)

Intensity - degree of repetitiveness; diversity of options (Turner and Lankford, 2005)
- Number of on-stream or off-stream reservoirs, bypasses, or easements (S)
- Number of agencies capable of assisting in flood management (NS)

Connectivity - ability to exchange matter, energy, and/or organisms (Duncan, 1995; Byrd and Turner, 2000)
- Magnitude/duration/frequency of river-floodplain connection (S)
- Use of surface-ground water conjunctive use operations (S)
- Longitudinal flux of water and materials (S)

Adjustability - ability to add, modify, and remove any component of the system (Duncan, 1995)
- Time and/or cost required to adjust the physical system or operations (S & NS)

Compatibility/Coordination - ability to utilize and share available information (Duncan, 1995; Byrd and Turner, 2000)
- Amount of data and information available for decision making (NS)
- Tools available to enhance use of data and information (NS)
Hypothesized relationship between flexibility and adaptive capacity

Flexibility characteristics
- Slack
- Intensity
- Connectivity
- Adjustability
- Compatibility/Coordination

Increased ability to cope or adapt
- Robustness
- Adaptability

Quickly and cost-effectively
- Responsiveness
- Efficiency
Application of Flexibility Framework
Comparison of management approaches in the 2012 Central Valley Flood Protection Plan (CVFPP)
Sacramento & San Joaquin River Basins
California’s Central Valley, USA

• Area
 ○ Sacramento Basin ≈ 70,500 km²
 ○ San Joaquin Basin ≈ 39,000 km²

• Climate
 ○ Mediterranean – wet winter, dry summer
 ○ Sierra snow melt
“Battling the Inland Sea”
(Robert Kelley, 1989)

State Plan for Flood Control (SPFC)

- 4 dams; 10 major multi-purpose
- \(\approx 2,600 \text{ km of levees, } \frac{1}{2} \text{ “high concern” } \)
- 7 relief bypasses

Some of the highest flood risk in the U.S.
(USACE 2002)

Photo credits, top left, down then across: Center for Sacramento History, Dottie Smith, Anthony Dunn, Dave Feliz, Adrian Mendoza, CA-DWR
Central Valley Flood Protection Plan (CVFPP, 2012)

- Primary Goal – Improve Flood Risk Management
- Secondary - O& M, Ecosystems, Institutional Support, Multiple-Benefits

CVFPP Management Approaches

- **Design Capacity**
 (State Plan for Flood Control – SPFC)
 - Levees in all areas

- **Lower Risk**
 (Protect High Risk Communities - PHRC)
 - Levees in high risk population centers

- **Enhance System**
 (Enhance Flood System Capacity - EFSC)
 - Levees in all areas, and multi-benefit projects

Systemwide Investment
(State Systemwide Investment Approach (SSIA))
Comparison of Approaches - diversity of projects

(2012 Central Valley Flood Protection Plan)
Comparison of Approaches - diversity of projects

- Land Use and Floodplain Management Integration
- Purchasing and Relocating Homes in Floodplains
- Raising and Waterproofing Structures and Building Berms
- Sacramento Channel and Levee Management and Bank Protection
- Develop and Implement Enhanced O&M Programs and Regional Organizations
- Identification and Repair of After Event Erosions
- Additional Forecasting and Notification
- Local Flood Emergency Response Planning
- All Weather Roads on Levee Crowns
- Additional Flood Information Collection and Sharing
- Known and Identified Erosion Repairs
- Site-Specific Rural Agricultural Improvement
- Rural Setback Leves
- Non-Urban - Design Capacity Improvements
- Small Community Levee Improvement 100-Year Protection
- Non-SPFC Urban Levee Improvements
- Urban improvement
- System Erosion and Bypass Sediment Removal Project
- Easements
- New Reservoir Storage
- Forecast-Coordinated/Forecast-Based Operations
- Flood System and Fish Passage Structures
- Improve Existing Levees
- New Levee Construction
- Ecosystem Restoration and Enhancement
- Agricultural Conservation Easement
- Land Acquisition

(2012 Central Valley Flood Protection Plan)
Comparison of Approaches - flexibility characteristics enhanced (expenditure $)

Design Capacity

Lower Risk

Enhance System

Systemwide Investment

- Slack
- Intensity
- Connectivity
- Adjustability
- Compatibility/ Coordination

Introduced inflexibilities???
(ex. more/ stronger levees decrease connectivity)
Hypothesized relationship between flexibility and adaptive capacity

Flexibility characteristics:
- Slack
- Intensity
- Connectivity
- Adjustability
- Compatibility/Coordination

Increased ability to cope or adapt:
- Robustness
- Adaptability

Quickly and cost-effectively:
- Responsiveness
- Efficiency
Approach Comparison - Costs and benefits

<table>
<thead>
<tr>
<th>Approach</th>
<th>Cost range ($ Billion)</th>
<th>Implementation time (yrs)</th>
<th>Expected Annual Damages ($ Million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No project</td>
<td>-</td>
<td>-</td>
<td>329</td>
</tr>
<tr>
<td>State Plan Flood Capacity (SPFC)</td>
<td>18 to 23</td>
<td>30 to 35</td>
<td>187</td>
</tr>
<tr>
<td>Protect High Risk Communities (PHRC)</td>
<td>8 to 10</td>
<td>15 to 20</td>
<td>121</td>
</tr>
<tr>
<td>Enhance Flood System Capacity (EFSC)</td>
<td>32 to 41</td>
<td>35 to 40</td>
<td>64</td>
</tr>
<tr>
<td>State Systemwide Investment (SSIA)</td>
<td>14 to 17</td>
<td>20 to 25</td>
<td>111</td>
</tr>
</tbody>
</table>

(2012 Central Valley Flood Protection Plan)
Responsiveness and efficiency – current conditions

Cost effectiveness

Time effectiveness
Conclusions and Future Work

- **So far...**
 - Framework for operationalizing “flexibility” in water resources
 - Application to 2012 Central Valley Flood Protection Plan Approaches
 - Primary expenditures → Slack
 - Enhance System (EFSC) & Systemwide Investment (SSIA) Approaches → More diverse enhancement of flexibility characteristics
 - Lower Risk Approach (PHRC) → most cost- and time- effective, followed by Systemwide Investment (SSIA)

- **Ongoing work...**
 - More detailed case study and inter-basin comparisons
 - Robustness and adaptability (climate change projections)
 - Relationship between flexibility, robustness and adaptability
 - Peak flexibility?
 - Apply definition to other water resources objectives
• Thank you!
 o National Science Foundation*
 o OSU Student Sustainability Initiative, OSU Water Resources Graduate Program
 o Dr. Desiree Tullos (Advisor)
 o Cristina Mateus, Matt Cox, Cara Walter (Rivers Lab Group)
• Questions???
• Follow-up
 o difranck@engr.orst.edu, kara.difrancesco@gmail.com

*This material is based upon work supported by the National Science Foundation under Grant No. 0846360. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.

